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Abstract

The rapid worldwide spread of the severe acute respiratory syndrome (SARS) demonstrated the potential

threat an infectious disease poses in a closely interconnected and interdependent world. Here we introduce a

probabilistic model which describes the worldwide spreading of infectious diseases and demonstrate that a

forecast of the geographical spread of epidemics is indeed possible. It combines a stochastic local infection

dynamics between individuals with stochastic transport ina worldwide network which takes into account

the national and international civil aviation traffic. Our simulations of the SARS outbreak are in suprisingly

good agreement with published case reports. We show that thehigh degree of predictability is caused by the

strong heterogeneity of the network. Our model can be used topredict the worldwide spreading of future

infectious diseases and to identify endangered regions in advance. The performance of different control

strategies is analyzed and our simulations show that a quickand focused reaction is essential to inhibit the

global spreading of epidemics.
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I. INTRODUCTION

The application of mathematical modeling to the spread of epidemics has a long history and

was initiated by Daniel Bernoulli’s work on the effect of cow-pox inoculation on the spread of

smallpox in 1760[1]. Most studies concentrate on the local temporal development of diseases and

epidemics. Their geographical spread is less well understood, although important progress has

been achieved in a number of case studies [2, 3, 4]. The key question and difficulty is how to

include spatial effects and to quantify the dispersal of individuals. This problem has been stud-

ied with some effort in various ecological systems, for instance in plant dispersal by seeds [5].

Today’s volume, speed and non-locality of human travel (Fig. 1) and the rapid worldwide spread

of SARS (Fig. 2) demonstrate that modern epidemics cannot beaccounted for by local diffusion

models which are only applicable as long as the mean distancetraveled by individuals is small

compared to geographical extents. These local reaction-diffusion models generically lead to epi-

demic wavefronts, which were observed for example in the geotemporal spread of the Black Death

in Europe from 1347-50 [6, 7, 8, 9, 10].

Here we focus on mechanisms of the worldwide spreading of infectious diseases. Our model

consists of two parts: a local infection dynamics and the global traveling dynamics of individuals

similar to the models investigated in [11]. However, both constituents of our model are treated on a

stochastic level, taking full account of fluctuations of disease transmission, latency and recovery on

one hand, and fluctuations of the geographical dispersal of individuals on the other. Furthermore

we incorporate nearly the entire civil aviation network.

II. LOCAL INFECTION DYNAMICS

In the standard deterministic SIR model for infectious diseases, a population withN individuals

is categorized according to its infection status: susceptibles (S), infectious (I) or recovered and

immune (R)[6, 12]. The dynamics which specifies the flow among these categories is given by

ds/dt = −α s j, dj/dt = α s j − β j , (1)

wheres = S/N andj = I/N denote the relative number of susceptibles and infecteds, respec-

tively. The relative number of recovered individualsr = R/N is obtained by conservation of the
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Figure 1:Global aviation network. A geographical representation of the civil aviation traffic among

the 500 largest international airports in over 100 different countries is shown. Each line represents

a direct connection between airports. The color encodes the number of passengers per day (see

color code at the bottom) traveling between two airports. The network accounts for more than

95% of the international civil aviation traffic. For each pair (i, j) of airports, we checked all flights

departing from airport j and arriving at airport i. The amount of passengers carried by a specific

flight within one week can be estimated by the size of the aircraft (We used manufacturer capacity

information on over 150 different aircraft types) times the number of days the flight operates in one

week. The sum of all flights yields the passengers per week, i.e. Mij in Eq. (7). We computed the

total passenger capacity
∑

Mij of each airport j per week and found very good agreement with

independently obtained airport capacities.
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entire population, i.e.r(t) = 1−j(t)−s(t), andτ = β−1 is the average infectious period. The key

quantity describing the infection is the basic reproduction numberρ0 = α/β, which is the average

number of secondary infections transmitted by an infectious individual in an otherwise uninfected

population. Ifρ0 > 1 and the initial relative number of susceptibles is greater than a critical value

sc = 1/ρ0 an epidemic develops (dj/dt > 0). As the number of infected individuals increases, the

fraction of susceptibless decreases and thus the number of contacts of infected individuals withfig

susceptibles decreases untils = sc when the epidemic reaches its maximum and subsequently

decays.

The above SIR model incorporates the underlying mechanism of transmission and recovery

dynamics and has been able to account for experimental data in a number of cases. However,

transmission of and recovery from an infection are intrinsically stochastic processes and the deter-

ministic SIR model does not account for fluctuations. These fluctuations are particularly important

at the beginning of an epidemic when the number of infecteds is very small.

In this regime a probabilistic description must be used. Schematically the stochastic infection

dynamics is given by

S + I
α−→ 2 I, I

β−→ ∅ . (2)

The first reaction reflects the fact that an encounter of an infected individual with a susceptible

results in two infecteds at a probability rateα, the second indicates that infecteds are removed

(recover) at a rateβ and effectively disappear from the population. The quantity of interest is the

probabilityp(S, I; t) of finding a numberS of susceptibles andI infecteds in a population of size

N at timet. Assuming that the process is Markovian on the relevant timescales, the dynamics of

this probability is governed by the master equation [13]

∂t p(S, I; t) =
α

N
(S + 1) (I − 1) p(S + 1, I − 1; t) + β (I + 1) p(S, I + 1; t)

−
( α

N
SI p − β I

)

p(S, I; t) . (3)

In addition to this dynamics one must specify the initial conditionp(S, I; t = t0) which is typically

assumed to be a small but fixed number of infectedsI0, i.e. p(S, I; t = t0) = δI,I0δS,N−I0.

The relation of the probabilistic master equation (3) to thedeterministic SIR-model (1) can be

made in the limit of a large but finite population, i.e.N ≫ 1. In this limit one can approximate

the master equation by a Fokker-Planck equation by means of an expansion in terms of condi-

tional moments (Kramers-Moyal expansion [13]), see the supplement material. The associated
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description in terms of stochastic Langevin equations reads

ds/dt = −α s j +
1√
N

√

α s jξ1(t) (4)

dj/dt = αs j − β j − 1√
N

√

α s jξ1(t) +
1√
N

√

β jξ2(t) (5)

Here, the independent Gaussian white noise forcesξ1(t) andξ2(t) reflect the fluctuations of trans-

mission and recovery, respectively. Note that the magnitude of the fluctuations are∝ 1/
√

N and

disappear in the limitN → ∞ in which case Eqs. (1) are recovered. However, for large but finite

N a crucial difference is apparent: Eqs. (4) and (5) contain fluctuating forces andN is a param-

eter of the system. A careful analysis shows that even for very large populations (i.e.N ≫ 1)

fluctuations play a prominent role in the initial phase of an epidemic outbreak and cannot be ne-

glected. For instance even whenρ0 > 0, a small initial number of infecteds in a population may

no necessarily lead to an outbreak which cannot be accountedfor by the deterministic model.

III. DISPERSAL ON THE AVIATION NETWORK

As individuals travel around the world, the disease may spread from one place to another. In

order to quantify the traveling behavior of individuals, wehave analyzed all national and interna-

tional civil flights among the500 largest airports by passenger capacity. This analysis yields the

global aviation network shown in Fig. 1, further details of the data collection is compiled in the

supplement material. The strength of a connection between two airports is given by the passengers

capacity, i.e. the number of passengers that travel this route per day.

We incorporate the global dispersion of individuals into our model by dividing the population

into M local urban populations labeledi containingNi individuals. For eachi the number of

susceptibles, infecteds individuals is given bySi and Ii, respectively. In each urban area the

infection dynamics is governed by the master equation (3).

Stochastic dispersal of individuals is defined by a matrixγij of transition probability rates

between populations

Si

γij−→ Sj Ii

γij−→ Ij, i, j = 1, ..., M , (6)

whereγii = 0. Along the same lines as presented above one can formulate a master equation for

the pair of vectorsX = {S1, I1, ..., SM , IM} which defines the stochastic state of the system. This

master equation is provided explicitely in supplement material.

5



In order to account for the global spread of an epidemic via the aviation network one needs to

specify the matrixγij . Since the global exchange of individuals between urban areas is carried

out by airborne travel one can estimate the probability ratematrix γij by t. We assume that an

individual remains in urban area for some time before traveling to another region. A flightj → i

is chosen according to the weights

wij = Mij/
∑

i

Mij . (7)

whereMij is the number of passengers per unit time that depart from an airport in regionj and

arrive at airport in regioni. The matrixw accounts for the overall connectivity of the aviation

network as well as for the heterogeneity in the strength of the connections. Denoting the typical

time period individuals remain ati by τi the matrixγij is expressed in terms ofwij according to

γij = wij/τj . If we assume that each airport is surrounded by a catchment area with a population

Ni the typical time individuals remain ati is given byτi = Ni/
∑

j Mji. If the capacity of airport

i reflects the need of the associated catchment area (i.e.Ni ∝
∑

j Mji), the waiting timesτi are

identical for alli, i.e. τi = τ = γ−1 which impliesγij = γ wij. In our model the global rateγ

is a free parameter. In order to verify the its validity, we apply our model to the SARS outbreak.

The rateγ can be computed from the ratio of the number of infected individuals in Hong Kong to

the number of infected individuals outside Hong Kong, whichis provided by the WHO data. For

the local infection dynamics we use a simple extension of theabove stochastic SIR model: The

categoriesS, I andR are completed by a categoryL of latent individuals which have been infected

but are not infectious yet themselves, accounting for the latency of the disease. In our simulations

individuals remain in the latent or infectious stage for periods drawn from the delay distribution

provided in Fig. 2 in [14]. In our simulation we chose random infection times the distribution of

which is known for SARS [14]. In a realistic simulation the basic reproduction numberρ0 cannot

be assumed to be constant over time. Successful control measures, for instance, generally decrease

ρ0. We chose a time dependentρ0(t) as provided by Refs. [15, 16].

IV. RESULTS OF SIMULATIONS

Fig. 2 depicts a geographical representation of the resultsof our simulations. Initially, an

infected individual was placed in Hong Kong. For this initial condition we simulated1000 real-

izations of the stochastic model and computed the mean value〈I(t)〉 of the number of infecteds
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Figure 2: (a) Geographical representation of the global spreading of probable SARS cases on

May 30th, 2003 as reported by the WHO and CDC. The first cases of SARS emerged in mid

November 2002 in Guangdong Province, China[17]. The disease was then carried to Hong Kong

on the February 21st, 2003 and began spreading around the world along international air travel

routes, as tourists and the medical doctors who treated the early cases traveled internationally.

As the disease moved out of southern China, the first hot zones of SARS were Hong Kong, Sin-

gapore, Hanoi (Viet Nam) and Toronto (Canada), but soon cases in Taiwan, Thailand, the United

States, Europe and elsewhere were reported. (a) Geographical representation of the results of

our simulations 90 days after an initial infection in Hong Kong, The simulation corresponds to the

real SARS infection at the end of May, 2003. Since our Since the simulations cannot describe

the infection in China, where the disease started in November 2002, we used the WHO data for

China.
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at each nodei = 1, ..., M of the network. Since the size of catchment areas varies on many

scales, the fluctuation range is best quantied by the means ofthe relative variance ofz = log I,

i.e. η =
√

〈z2〉 − 〈z〉2/ < z > . In our simulations we computed this measure for everyi of the

network. Fig 2 shows the prediction of our model for the spread of SARS att = 90 days after

the initial outbreak in Hong Kong (February 19, 2003), corresponding to the May 20, 2003. The

results of our simulations are in remarkable agreement withthe worldwide spreading of SARS as

reported by the WHO (compare Fig. 2): There is an almost one-to-one correspondence between

infected countries as predicted by the simulations and the WHO data.

Also the orders of magnitude of the numbers of infected individuals in a country agree (Ta-

ble I). While for most countries the reported cases by the WHOlie within the fluctuation range,

two deviation between the reported cases and the predictions of the simulation are apparent: Our

simulations predict a relatively high number of SARS cases in Japan (between 26.6 and 137.0).

However, the Japanese Government reported no confirmed case(only 5 suspected cases) of SARS

in Japan, as of May 30, 2003. How a single realization may deviate from the expectation can be

seen from the difference between the simulation and the reported cases in the USA and Canada.

The simulations show that on average the USA should have a higher number of SARS cases than

Canada, although the opposite was reported by the WHO. The impact of the inherent stochasticity

of the infection and traveling dynamics is discussed in the next section.

V. THE IMPACT OF FLUCTUATIONS

Bearing in mind the low number of infections and the small value ofρ0 for SARS, the high de-

gree of predictability, i.e. the low impact of fluctuations on the network level, is rather surprising,

especially because our simulations take into account the full spectrum of fluctuations of disease

transmission, recovery and dispersal and that the system evolves on a highly complex network.

Naively, one expects that dispersal fluctuations between two given populations are amplified as

the epidemic spreads globally and that no prediction can be made. In order to clarify this impor-

tant point, consider the system of two confined populationsA andB which exchange individuals

as depicted in Fig. 3. For simplicity we assume that both populations have the same size (i.e.

NA = NB = N) and individuals traverse at a rateγ. Now assume that initially a small number of

infectedI0 is introduced to populationA without any infecteds contained inB. For a sufficiently

high number of infecteds inA an epidemic occurs. Forγ > 0 infecteds are introduced toB and a
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Country WHO WHO Simulation

05/20/200305/30/2003Average η Min Max

Hong Kong 1718 1739 1951 0.35 1373.92770.4

Taiwan 383 676 318.2 0.55 184.0 550.3

Singapore 206 206 136.6 0.68 69.4 268.7

Japan - - 60.4 0.84 26.6 137.0

Canada 140 188 41.8 0.94 16.4 106.6

USA 67 66 65.9 0.84 28.4 152.7

Vietnam 63 63 49.2 0.86 20.7 116.3

Philippines 12 12 30.0 0.97 6.2 50.7

Germany 9 10 14.4 1.1 4.8 43.1

Netherlands - - 5.9 1.09 2.0 17.6

Bangladesh - - 10 1.15 3.2 31.6

Mongolia 9 9 - - - -

Italy 9 9 5.3 1.02 1.9 14.6

Thailand 8 8 35.4 0.89 14.5 86.8

France 7 7 7.6 1.09 2.6 22.6

Australia 6 6 27.0 1.05 10.1 72.5

Malaysia 7 5 17.7 1.05 6.2 50.7

United Kingdom 4 4 16.7 1.04 5.9 47.0

Table I: A comparison of the SARS case reports provided by the WHO and the results of our

simulation for all countries with a reported case number ≥ 4. The expected number of infecteds

predicted by our model is estimated by the average over 1000 realizations of the stochastic model.

The epidemic was simulation for t = 90 days after the initial outbreak of SARS in Hong Kong

(February 19, 2003), yielding a simulation end of May 20, 2003. The range defined by column 6

and 7 was computed by means of the fluctuation measure η (see text) which is approximately one

for all countries.
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Figure 3:Two confined populations with exchange of individuals. In each population the dynamics

is governed by the SIR-reaction scheme (6). Individuals travel from on population to the other at

a rate γ. Parameters are NA = NB = 10, 000, R0 = 4 and an initial number of infecteds I0 = 20 in

population A Left: The probability p(γ) of an outbreak occurring in population B as a function of

transition rate γ. The insets depict histograms of the time lag T between the outbreaks in A and B

for those realization for which an outbreak occurs in B. The circles are results of the simulations of

100, 000 realizations, the solid curve is the analytic result of Eq. (8) Right: A star-shaped network

with a central population A connected to M − 1 populations B1, ..., BM−1with rates γ1, ..., γM−1.

The cumulated variance (Eq. ??) for a star network with 32 populations is depicted as a function of

the average transmission rate γ̄. Two cases are exemplified: equal rates (circles) and distributed

rates according to Eq. 10 with γmax/γmin ≈ 1000 (squares). The solid lines show the analytical

results given by Eq. 9 and Eq. 8. Parameters are NA = NB = 10, 000, R0 = 4 and an initial

number of infecteds I0 = 20 in population A. The numerical values are obtained by calculating

the variance of the fluctuations of 100 different realizations of the epidemic outbreak for each γ̄.

subsequent outbreak may occur inB after a time lagT . Fig. 3 depicts the results of simulations

for two populations withN = 10, 000 andρ0 = 4. Various realizations of the time courseIA(t)

andIB(t) of the epidemic in both populations we computed. The initialnumber of infecteds in

population wasIA(t = 0) = I0 = 20. The left panel depicts the probabilityp(γ) of an outbreak

occuring in populationB as a function if the transition rateγ. For large enough rates the proba-

bility is nearly unity, since a sufficient number of infecteds is introduced toB. For very low rates
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γ no infecteds are introduced toB during the time span of the epidemic inA and thusp(γ) → 0

asγ → 0. For intermediate values ofγ the probabilityp(γ) is neither one nor unity and the time

course in populationB cannot be predicted with certainty. The functionp(γ) is given by

p(γ) = 1 − exp(−γ/γ⋆), (8)

where the critical rateγ⋆ is a function of the parametersρ0 andN . The insets depict histograms

of the time lagT for those realization for which an outbreak occured inB. Each histogram

corresponds to a different transition rateγ. The smallerγ the higher the variability inT . Note that

even in a range in whichp(γ) ≈ 1, the time lagT is still a stochastic quantity with a high degree

of variance (see also the supplement material).

Consequently, the introduction of stochastic exchange of infected individuals leads to a lack of

predictability in the time of onset of the initially uninfected population. In the light of the analysis

of two populations, the predictability in the case of SARS onthe aviation network seems even

more puzzling.

The situation changes drastically in networks which exhibits a high degree of variability in the

rate matrixγij. Clearly, this is the case for the aviation network. Consider the simple network

depicted in Fig. 3. Each population containsN individuals. A central populationA is coupled to

a set ofM − 1 surrounding populationsB1, ...BM−1. Assume that initially a number of infecteds

I0 is introduced to the central populationA such that an outbreak occurs. The entire set of rates

{γj} j=1,...,M−1 determines the behaviour in the surrounding populations. If all ratesγj are identical

and very small we expect no infection to occur in theBj , for large enoughγj an outbreak will occur

in everyBj . In the aviation network, however, transition rates are distributed on many scales and

the response of the network to a central outbreak depends on the statistical properties of this

distribution denoted byq(γ). In order to quantify the reaction of the network we introduce for each

surrounding population a binary numberξj with j = 1, ..., M − 1 which is unity if an outbreak

occurs inBj and zero if it doesn’t. According to Eq. (8) for a given rateγ this quantity is a random

number with a conditional probability densityp(ξi|γ) = (1 − p(γ)) δ(ξi) + p(γ) δ(ξi − 1). The

variability of the network is thence quantified be the cumulative variance per population and we

define

σ =
4

M − 1

∑

i

var(ξi) =

∫

dγ p(γ) (1 − p(γ)) q(γ) (9)

as a measure for the uncertainty of the network response. If for exampleq(γ) = δ(γ − γ̄), i.e.

all transition rate are identical and equal toγ̄, thenσ(γ̄) = 4 p(γ̄)(1 − p(γ̄), which is unity for
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p(γ̄) = 1/2. Comparing with Eq. (8) we see that when ¯γ = γ⋆ log 2 the system with identical

transition ratesγi = γ̄ exhibits the highest degree of unpredictability when the rates are of the

order of the critical rate defined by (8). The functionσ(γ̄) is shown in Fig. 3.

Now assume that the rateγj are drawn from a distribution

q(γ) =
1

log(γmax/γmin)

1

γ
γmax ≤ γ ≤ γmin. (10)

which implies a high degree of variance within the interval[γmin, γmax] (i.e. γj is distributed uni-

formly on a logarithmic scale). This high variability in rates drastically changes the predictability

of the system. Inserting into Eq. (9) yieldsσ(γ̄) for strongly distributed rates. In Fig. 3 this func-

tion is compared to a system of identical transition rates. On one hand, for intermediate values of

γ ≈ γ⋆ the predictability is much higher than in the system of identical rates. This is a rather coun-

terintuitive result. Despite the additional randomness intransition rates, the degree of determinism

is increased.

VI. CONTROL STRATEGIES

Fig. 4 exemplify how our model can be employed to predict endangered regions if the origin of

a future epidemic is located quickly. The figure depict simulations of the global spread of SARS

at t = 90 days after hypothetical outbreaks in New York and London, respectively. Despite the

worldwide spread of the epidemic in each case, the degree of infection of each country differs

considerably, which has important consequences for control strategies.

Vaccination of a fraction of the population reduces the fraction of susceptibles and thus yields

a smaller effective reproduction numberρ. If a sufficiently large fraction is vaccinated,ρ drops be-

low 1 and the epidemic becomes extinct. The global aviation network can be employed to estimate

the fraction of the global population that needs to be vaccinated in order to prevent the epidemic

from spreading. Fig. 4 demonstrates that a quick response toan initial outbreak is necessary if

global vaccination is to be avoided. The Figure depicts the probability pn(v) of having to vacci-

nate a fractionv of the population if an infected individual is randomly placed in one of the cities

and permitted to traveln = 1, 2 or 3 times. For the majority of originating cities the initial spread

is regionally confined and thus a quick response to an outbreak requires only a vaccination of a

small fraction of the population. However, if the infected individual travels twice, the expected

fraction〈v〉 of the population which needs to be vaccinated is considerable (74.58%). Forn = 3

12



Figure 4: Left: Geographical representation of the results two simulations of hypothetical SARS

outbreaks 90 days after an initial infection in (a) New York and (b) London for the same parame-

ters and color code as in Fig. 2. Right: Impact and control of epidemics. The probability pn(v) of

having to vaccinate a fraction v of the population in order to prevent the epidemic from spreading,

if an initial infected individual is permitted to travel n = 1 (red), 2 (blue), and 3 (green) times.

The probability pn(v) is estimated by placing the infected individual on a node i (black dot) of the

network. The fraction vi associated with node i is given by the number of susceptibles in a subnet-

work which can be reached by the infected individual after n = 1, 2 and 3 steps. Histogramming

vi for all nodes i yields an estimate for pn(v). The light-blue curve depicts the strong impact of

isolating only 2% of the largest cities after an initial outbreak (n = 2) and is to be compared to the

blue curve.

global vaccination is necessary.

As a reaction to a new epidemic outbreak, it might be advantageous to impose travel restrictions

to inhibit the spread. Here we compare two strategies: (i) the shutdown of individual connections

and (ii) the isolations of cities. Our simulations show thatan isolation of only2% of the largest

cities already drastically reduces〈v〉 (with n = 2) from 74.58% to 37.50% (compare the blue and

light-blue curves in Fig. 4). In contrast, a shutdown of the strongest connections in the network is

not nearly as effective. In order to obtain a similar reduction of 〈v〉 the top27.5% of connections

would need to be taken off the network. Thus, our analysis shows that a remarkable success is

guaranteed if the largest cities are isolated as a response to an outbreak.
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In a globalized world with millions of passengers travelingaround the world week by week

infectious diseases may spread rapidly around the world. Webelieve that a detailed analysis of the

aviation network represents a cornerstone for the development of efficient quarantine strategies to

prevent diseases from spreading. As our model is based on a microscopic description of traveling

individuals our approach may be considered a reference point for the development and simulation

of control strategies for future epidemics.
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